Implicits: Intro and Tour

Jules Bloomenthal

Unchained Geometry, Inc. Seattle, Washington

images in the .pdf version of this document are degraded for the sake of compression - higher quality images may be found in papers or pictures at www.unchainedgeometry.com/jbloom

Jules@UnchainedGeometry.com 206-617-6900

Emphasis

High-level concepts, arcane detailsVersatility and diversity of implicit methodsEase in addressing certain problems

Topics

Basics

Blends

Visualization

Non-Manifold Polygonization

Applications

- computing the medial axis
- computing deformation weights for character animation

The Mighty Maple 1985

Lofted Ramiform

Complexity of Patch Network

Implicit Surface

Definition

$\{ p: f(p) = 0 \}$

N.B. 'such that'

Three Representations for the Unit Circle

Equiangular Parametric

(transcendental trigonometric)

 $p = (\cos(\alpha), \sin(\alpha))$

Non-Equiangular Parametric (rational trigonometric)

 $p = (\pm(1-t^2) / (1+t^2), 2t / (1+t^2))$

Implicit $p_x^2 + p_y^2 - 1 = 0$

Implicit

f(x,y,z) = 0 characterizes volume blends easy inside/outside easy point generation hard precise control hard

Parametric

(x,y,z) = F(u,v) characterizes surfaces blends hard inside/outside hard point generation easy precise control easy

Discontinuities / Degeneracies

 $f_{1}f_{2}$

 $min(f_{1}, f_{2})$

Multiple Contours from Periodic Function

Interpolation

Articulation $f(p) = td(S_1, p) + (1 - t)d(S_2, p) - c$, where d(S, p) is Euclidean distance between point p and segment S $f(p) = td^{2}(S_{1}, p) + (1 - t)d^{2}(S_{2}, p) - c$ f(p) = d(S, p) - c, where $S = tS_1 + (1 - t)S_2$ а S f(p) = d(S, p) - c, where S is a rigid body rotation between S_1 and S

Ink and Printer Head from Discrete Volumetric Data

Ray-Traced

Contours Receding from Viewer

Particle Control and Display

Polygonization by Numerical Continuation

semi-disjoint cells partition space, enclosing object's surface

Binary Subdivision for Precise Vertex Location

Surface / Tetrahedron Intersections

Polygonization Resolution

Polygonized Torus, Sphere

'Shrink-wrap' Polygonization

courtesy Brian Wyvill

Adaptive Polygonization

Adaptive Polygonization and 'Cracks'

Recursive Subdivision of Cube, Tetrahedron

cracks possible with cubic subdivision

Kuhn simplex maintains crack-free 'honeycomb'

Triangle Optimization during Polygonization

courtesy Doug Moore

Marching Cubes

Binary Subdivision and Linear Interpolation

Surface Equi-distant from Two Interlocking Tori

Reconstruction from Cloud of Points

Implicitly Defined Planar Contours

Blend Terminology

'Blobby Molecules' real-time motion and display

courtesy Brian Wyvill

Skeletal Fields

Bulging from Overlapped Cylinders

Convolution

• rounds corners, fillets crevices

• produces a smooth, differentiable field

1D and 2D Convolution Kernels

Two Line Segments and their Convolution

A Simple Convolution Surface

Folding Convolution Surface

Evaluating 3D Convolution

Convolution of Rotating Rectangles

Convolution Primitives

Convolutions in 2D

Non-Manifold Leaves

Manifold, Manifold-with-Boundary, and Non-Manifold Surfaces and Contours

Non-Manifold Schemes

 $f_1 max(f_1, f_2)$

 $abs(f_1)-min(0, f_2)$

Non-Manifold Polygonization Complications

Non-Manifold Blend to Plane and Patch

Non-Manifold Implicit Blend

The Medial Axis (Surface)

the locus of centers of maximally sized inscribable spheres (circles)

Skeletonization: Object → Locus *Reconstruction*: Locus → Object

Continuation Details

2) finding first skeletal point

a) Initial skeletal point surrounded by initial cell

2D and 3D Medials

- geometrically derivable
- stick-figure control

Medial Axis/Surface

Original is *re-constructable*

distance surface (exact reconstruction)

convolution surface (differentiable)

Reconstruction

non-interactive prone to artifacts variable vertex count

Deformation (vertex blending)

inherent artifacts sensitive blend weights

Medial-Based Vertex Deformation

Vertex Deformation

as a weighted vector sum using the medial axis

Vertex Deformation

IK-Skeleton Manipulates Medial

Demo
Object Articulation by Vertex Deformation

